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Abstract. An efficient and relatively fast algorithm for the detection of
communities in complex networks is introduced. The method exploits spectral
properties of the graph Laplacian matrix combined with hierarchical clustering
techniques, and includes a procedure for maximizing the ‘modularity’ of the
output. Its performance is compared with that of other existing methods, as
applied to different well-known instances of complex networks with a community
structure, both computer generated and from the real world. Our results are,
in all the cases tested, at least as good as the best ones obtained with any
other methods, and faster in most of the cases than methods providing similar
quality results. This converts the algorithm into a valuable computational tool
for detecting and analysing communities and modular structures in complex
networks.
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1. Introduction

The outburst of activity in the field of complex networks in recent years has been rather
spectacular and amazing. Networks of any thinkable (and sometimes ‘unthinkable’)
type, including social, biological and technological ones, have been described, and their
topological as well as dynamical features studied. A whole line of research has emerged
and a new perspective for tackling complex problems created. See [1]–[5] for reviews from
different perspectives and for exhaustive lists of references.

One particular aspect which has drawn much attention is the existence of subsets of
nodes highly linked among themselves but loosely connected to the rest of the network,
i.e. communities. These are believed to play a central role in the functional properties
of complex structures [6, 7]. Identifying communities and analysing their nature is an
important task in some fields—for instance, computer science [8, 9], sociology [6, 10],
biochemistry [11], bibliometrics [12], taxonomy—and, as a more specific instance, in the
development of efficient search engines for the WWW. According to Flake et al [13], ‘as
the Web is self-organized into communities, search engines implementing such a concept
would help surfers to find what they look for and avoid other contents’.

The concept of ‘community’ may be retained as rather vague and phenomenological.
Indeed, depending on the network under scrutiny, it might be quite an artificial one,
while, in other cases, it emerges as a very natural and useful structure analysis tool. A
way to make the concept more clear-cut and practical is through the definition of the
modularity, Q (see below and [14, 15]), a quantity which provides a way to quantify the
community structure of a given network. Other quantities have been proposed with the
same purpose [7, 16, 17].
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The problem of finding communities is not new and is closely related to the problem
of graph partitioning, profusely studied in the context of computer science [18, 19]. A
review of some techniques used, including further references, can be found in [6, 20].
Related problems are image processing and pattern recognition, or more generically data
clustering: in these cases there is no underlying network, but instead some relation or
similarity between existing elements can be established [21]–[23].

In recent years many algorithms for detecting communities have been proposed,
starting with the seminal work by Girvan and Newman [6, 14]. These authors proposed an
iterative, divisive (as opposed to agglomerative) method based on the progressive removal
of links with the largest betweenness, a quantity proportional to the number of shortest
paths passing through a given edge [24]. The edges (or links) with the largest betweenness
have the most prominent role in connecting different parts of the graph and, therefore,
by removing them recursively a good separation of the network into its components
or communities can be found. This method generates very good results and has been
employed by different authors in studies of various kinds [25]. Unluckily, as already
pointed out by the authors themselves, it has a main disadvantage: its computational
demand is very high. For instance, for sparse networks with N nodes, the computation
time grows like N3. In order to deal with large networks, for which the previous algorithm
turns out to be not viable, Newman himself developed a faster method (of order N2). It is
based on the iterative agglomeration of small communities, starting from isolated nodes,
by locally optimizing the modularity. This method generates worse results4 than the
previous one.

Some alternative algorithms, both divisive and agglomerative (which we do not
attempt to exhaustively overview here), have been proposed in recent months. Some
of them are listed here in chronological order (see [20] for a more critical discussion of
some of them):

• The Radicchi–Castellano–Cecconi–Loreto–Parisi [17] method is of order N2. It is a
divisive algorithm that works nicely whenever triangular (or higher order) loops are
present in the network.

• The Wu–Huberman algorithm [26]. This is a fast method (linear in N), based on
the idea of voltage drops, which visualizes the network as an electric circuit. It can
be used to locate the community to which one specific node belongs, but it requires
successive iterations of the method in order to provide a global network division in
communities.

• The Reichardt–Bornholdt method [27]. In their recent paper these authors introduced
an algorithm inspired by the celebrated superparamagnetic clustering algorithm
devised by Blatt et al [28]. It is based on a q-state Potts Hamiltonian, and allows,
for the first time, for the identification of fuzzy communities.

• The Capocci–Servedio–Colaiori–Caldarelli method [29]. This algorithm combines
the use of spectral properties (which are nicely reviewed and generalized to study

4 The goodness of a given division (or division method) can be decided in absolute terms (when the
underlying community structure is known, as for example, in computer-generated networks) or in relative
terms (when the community structure is not known, but it maybe quantified in terms of modularity or similar
measurements [14, 15, 17]; large modularity values correspond to better divisions).
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different kinds of networks—for instance, directed ones) with the use of correlation
measurements to determine community closeness.

• The Fortunato–Latora–Marchiori method [30]. This is a variation of the method by
Girvan and Newman, in which the betweenness is replaced by the alternative concept
of information centrality, as a way to measure edge centrality. The method generates
good results but its performance (N4 for a sparse graph) is rather poor.

Apart from these techniques recently introduced in the field of complex networks,
many other algorithms have been developed mainly in the context of computer science.
Most of them employ spectral analysis, which provides, in a very natural way (using the
first non-trivial eigenmode) a tool for bi-partitioning [31] as will be illustrated within
this paper. By iterative applications of bi-partitioning more elaborate divisions into
communities or components can be achieved [9, 32, 33]. Alternatively, some other spectral
methods employ more than one eigenmode leading directly to a splitting [16, 34, 35].

Without neglecting any of these algorithms, which can be applicable depending on the
situation under consideration, this paper introduces yet another new method, allowing for
a systematic analysis and detection of communities. It combines the following features:
(i) it generates good results in all the cases tested; (ii) it is relatively fast, as compared
with methods providing comparable results; (iii) it includes a way to optimize the output,
as will be explained in what follows.

The method proposed in this paper combines spectral methods with clustering
techniques, and uses the concept of modularity in order to develop a working algorithm.
More precisely, the main lines of the algorithm are as follows: spectral analysis of the
Laplacian matrix allows us to project the network nodes into an eigenvector space of
variable (tunable) dimensionality. Afterwards, a metric is introduced in various possible
fashions and then, finally, by applying standard clustering techniques a dendrogram [6] is
built up. The modularity of possible groupings (sections of the dendrogram) is maximized
for every dimension considered for the eigenvector space and, finally, the global maximum
over all possible number of eigenvectors (i.e. dimensions of the space) is found.

In the forthcoming sections we review some basic ideas and definitions of spectral
analysis and we introduce our algorithm step by step. Then we apply it to different
workbench networks, comparing its performance with that of other existing methods,
and, finally, the conclusions are presented.

2. Using the Laplacian eigenvectors to detect communities

2.1. Spectral analysis: Laplacian eigenvectors

The topology of a network with N vertices can be expressed through a symmetric N ×N
matrix L, the Laplacian matrix [36]. The diagonal elements Lii are given by the degree
ki of the corresponding vertex i, while off-diagonal elements Lij are equal to −1 if an
edge between the corresponding vertices i and j exists and 0 otherwise. The sum of
elements over every fixed row or column is, trivially, equal to zero. Therefore, a ‘constant
vector’ (with all its components taking the same value) is an eigenvector with eigenvalue 0.
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Furthermore, since the quadratic form
n∑

i,j=1

Lijxixj

can be written as
∑

links

(xi − xj)
2,

which is positive semidefinite, the eigenvalues of L are either zero or positive [37]. The
use of other matrices, employed to study network spectral properties, has been recently
considered in [16, 29, 33].

If the graph under analysis is connected, there is only one zero eigenvalue
corresponding to a constant eigenvector. In contrast, for non-connected graphs (composed
of m connected components) the Laplacian matrix is block diagonal. Each block is
the Laplacian of a subgraph and it admits a constant eigenvector with eigenvalue 0.
Therefore, the Laplacian of the whole graph has m degenerate eigenvectors (corresponding
to eigenvalue zero), each of them having non-zero constant components for nodes in the
associated subgraph and 0 in the rest.

If the subgraphs are not fully disconnected but, instead, a few links exist between
them, the degeneracy disappears. This leaves only one trivial eigenvector with eigenvalue
0 and m− 1 approximate linear combinations of the old ones with slightly non-vanishing
eigenvalues [20, 29]. As the Laplacian matrix is real symmetric, with orthogonal
eigenvectors, and since the first of them has equal components, all the others must have
components whose total sum vanishes. In order to illustrate how these ideas can be applied
to identify communities, let us take, as a particular example, the number of subgraphs to
be 2. In this case, the components of the second (first non-trivial) eigenvector are positive
for one subgraph and have to be negative for the other, providing a clear-cut criterion
for bisecting the graph [31]. If the two subgraphs are not very well separated, then this
distinction between positive and negative values becomes fuzzier. In such cases, more
elaborate criteria for deciding how to effect the separation into two subgroups have been
profusely studied in the specialized literature. Some of them optimize purposely defined
quantities such as the normalized cut [33] and the conductance [32], which are defined as
functions of the number of links that exist between the two components and their sizes5.
By iterating successive bisections, techniques for obtaining more elaborate splittings can
be constructed [9, 32, 33].

An alternative strategy is to assume that if there are more than two weakly
connected blocks it should be somehow possible to find them all by inspecting the
eigenvalue spectrum more accurately, instead of considering just the first non-trivial
eigenmode [34, 35]. Let us explore this idea, which is the one that we will exploit, in
more detail. Figure 1(a) shows the components of the first non-trivial eigenvector of a
computer-generated graph including four communities, each composed by 32 nodes (see
forthcoming sections for details). The group structure is clear, even if the two communities
at the bottom are very near to each other and some nodes could be misclassified. In other

5 In principle, the minimization of the conductance or the normalized cut among all possible splits is an NP-hard
problem. However, it can be shown that the cuts based on the components of the second eigenvector of the
Laplacian or some related matrix give a guaranteed approximation to the optimal cut [35, 38].
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Figure 1. (a) Components of the first non-trivial eigenvector for a computer-
generated network with four communities (see the main text). Two communities
are clearly identified while the other two overlap. (b) All communities can be
clearly identified when the components of the second eigenvector are plotted
versus those of the first one—i.e. when the dimensionality of the eigenvector
space is enlarged.

examples, with a number of inter-group connections larger than here, the communities
become more entangled, and the prospects for extracting clear-cut subdivisions using this
type of one-dimensional plot worsens. This difficulty can be circumvented by taking into
account some more eigenvectors, i.e. by enlarging the projection space. This is illustrated
in figure 1(b), where the nodes of the same graph are plotted using the components of the
first two non-trivial eigenvectors as coordinates. Simple inspection by eye shows that all
communities are distinctly separated now. Actually, using three eigenvectors the nodes of
the different groups fall around the vertices of a (slightly distorted) tetrahedron, with some
further improvement in inter-community separation. Generalizing this idea, each vertex
in the graph is represented by a point in a D-dimensional space in which the coordinates
are given by its projections on the first D non-trivial eigenvectors.

2.2. Introducing a metric

Aimed at turning ‘eye inspection’ of communities into a more quantitative measure,
the explicit introduction of a metric (or similarity measure) is required. The most
straightforward choice would be the Euclidean distance. However, this is not the only
possibility; another one is to consider the angular distance, defined as the angle between
the vectors joining the origin of the D-dimensional space with the two points under
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consideration. This possibility is inspired by empirical observations: loosely connected
nodes could be quite ‘Euclideanly’ far from each other within a community, but still lying
in the same ‘direction’ in the eigenvector space6. Moreover, when networks are large,
nodes in the same community form a roughly one-dimensional ‘bundle’ (see for example
figure 3 in [8]). Note also that using angular distances is tantamount to normalizing the
position vectors in the corresponding space and then measuring the Euclidean distance,
similarly to what was proposed in [35]. As will be shown, the angular metric generates,
as a matter of fact, better results than the Euclidean one.

2.3. Cluster analysis

Having introduced a way to measure distances in the eigenvector space, a method for
grouping nodes into communities is required. Such a method is provided by standard
clustering techniques [18]—for example, hierarchical clustering. Starting from N clusters,
composed by individual nodes, the two closest ones are iteratively joined together. In order
to define cluster-to-cluster distance or ‘closeness’ (for a given metric), different criteria can
be employed, generating among others the following clustering algorithms [18]:

• All possible pairs of nodes, taking one from each of the two clusters under examination,
are considered. The minimum possible node-to-node distance is declared to be the
cluster-to-cluster closeness. This leads to single-linkage clustering.

• Proceeding as before, but replacing the ‘minimum possible node-to-node distance’
between pairs by the ‘maximum’ one, complete-linkage clustering is defined.

• Another possibility consists in taking the average distance between all possible pairs.
This leads to group-average clustering.

• A cluster is represented by a single point located at its ‘centre of mass’; the cluster-
to-cluster distance is defined as the node-to-node distance between these two points.
This leads to centroid clustering.

All these criteria have been broadly studied and applied. None of them can be proved
to be generically more efficient than the others. In particular, the single-linkage method,
being very simple, can be useful for analysing large data sets, and possesses some further
mathematical advantages [18]. On the other hand, it has a tendency to cluster together,
at a relatively low level, distant nodes linked successively by a series of intermediates.
This is usually called the chaining property, which constitutes in some cases a serious
drawback.

On the other hand, a convenient advantage of both single-linkage and complete-linkage
clusterings is that only the ordering of the similarity measure is important: every other
metric which produces the same ordering of distances leads to the same results.

The output of these algorithms can be represented by a hierarchical tree, usually
called a dendrogram. The starting single-node communities are the branch tips of such
a tree, which are repeatedly joined until the whole network has been reconstructed as
a single component (see, for instance, figure 2 in [6]). Each level of the tree represents

6 The attentive reader could argue that figure 1(b) provides a counterexample to this general assertion; i.e. the
two uppermost groups are nearby angularly but far apart Euclideanly. Indeed, taking the three-dimensional
version of the net analysed in such a figure, the four communities lie within the main directions on a tetrahedron,
circumventing this apparent contradiction.
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a possible splitting of the network into a set of communities, obtained by halting the
clustering process at the corresponding level. However, the clustering algorithm gives no
hint about the ‘goodness’ of such a partition.

2.4. Modularity

In order to quantify the validity of possible subdivisions (obtained as explained above)
and to optimize the chosen splitting, we use, following [14, 15], the concept of modularity.
It is defined as follows: given a network division, let eii be the fraction of edges in the
network between any two vertices in the subgroup i, and ai the total fraction of edges with
one vertex in group i (where edges ‘internal’ to each group have weight 1 while inter-group
links have weight 1/2). The modularity, Q, is then defined as

Q =
∑

i

(eii − ai)
2. (1)

It measures the fraction of edges that fall between communities minus the expected value
of same quantity in a random graph with the same community division.

The maximization of modularity has been proposed as a possible way to detect
communities; since a full maximization is not possible in practice (the algorithm would
take an amount of time exponential in the number of nodes to explore all possible
splittings) an approximate algorithm has been suggested [15]. In our case, modularity
measurements are simply used to find the best splitting among all the possible partitions
of the dendrogram obtained following the previous steps [14].

Other indices quantifying the quality of splittings have also been proposed in the
literature. Some of them are the ‘conductance’, the ‘performance’ and the ‘coverage’, to
name but a few (see [16] and references therein for more details). None of these, taken by
itself, provides a fully useful criterion; they have to be combined somehow. It seems that
the modularity is a better, more efficient, choice.

2.5. Implementing a functioning algorithm

Summarizing the ideas introduced in the previous subsections, our algorithm can be
synthesized and implemented to build up a functioning algorithm as follows. First a few
eigenvalues and eigenvectors of the network Laplacian matrix are computed. The question
of what ‘a few’ means will be tackled afterwards. Since the Laplacian is usually a sparse
matrix and not all eigenpairs are required (that will require a time N3), the relatively fast
Lanczos method [39] can be employed. Nonetheless, the eigenvector computation is still
the most computationally expensive step of the algorithm.

For any given number D of eigenvectors (i.e. for a fixed dimension of the space)
a similarity measure (or metric) is chosen, providing a basis for applying one of the
previously introduced clustering techniques. Typically, Euclidean or, better, angular
distances are employed.

Among the various hierarchical clustering methods available, we test single-linkage
and complete-linkage clustering algorithms. These two have the advantage that no new
distances have to be calculated during cluster formation: when two subgroups merge to
form a larger one, its distance to any other cluster is given by the shortest (single-linkage)
or by the largest (complete-linkage) of the distances from the two original components.
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As said before, the single-linkage approach performs poorly in many cases owing to the
previously discussed ‘chaining’ property, converting complete linkage into the preferential
choice. Other linkage methods will be explored in the future; in particular, group-average
linkage could be suitable when studying tree-like graphs [40].

An important difference between the way we apply clustering techniques and other
standard applications is that we know in advance the underlying network structure. Using
this knowledge, we implement the constraint that two clusters are susceptible to merging
only if there exists a link between them in the original network.

At every step of the clustering process the modularity is computed. Once the whole
dendrogram is completed, the splitting with the maximum modularity is chosen as the
output for the corresponding D.

The optimal value of D to be taken is not known a priori, but since the eigenvalue
calculation is the slowest part of the algorithm, we can repeat the hierarchical clustering
using all possible values of D, and look for the largest value of the modularity. Typically
the curve for the largest modularity versus D exhibits a maximum whose corresponding
splitting provides the algorithm final output. If, instead, the curve keeps on growing up
to the largest D, the number of computed eigenpairs has to be enlarged in order to extend
the range of the curve, until a clear-cut maximum is pinpointed.

3. Tests of the method

3.1. Artificial community networks

To prove the algorithm we first test it on computer-generated random graphs with a well-
known pre-determined community structure [6]. Each graph has N = 128 nodes divided
into four communities of 32 nodes each. Edges between two nodes are introduced with
different probabilities depending on whether the two nodes belong to the same group or
not: every node has kin links on average to its fellows in the same community, and kout

links to the outer-world, keeping kin + kout = 16.
In figures 2 and 3 we plot the modularity corresponding to the best splitting identified

by the algorithm normalized by that of the known answer, and the average number of
correctly classified vertices, respectively. Data for both Euclidean and angular measures,
and both single-linkage and complete-linkage algorithms, are shown. The number of
eigenvalues leading to the largest modularity is between 3 and 5 for the angular distance,
and between 2 and 4 for the Euclidean one. Let us remark that these are roughly equal
to the number of communities and that the performance is much better using the angular
distance.

Summing up: on these computer-generated networks, our algorithm (equipped with
the angular distance and complete linkage) generates excellent results as compared with
other methods (see, for instance, figure 1 in [15] and figure 3 in [30]).

3.2. Zachary karate club

Now we consider the well-known karate club friendship network studied by Zachary [41],
which has become a commonly used workbench for community-finding algorithm
testing [6, 14, 15, 17, 26, 27, 30].
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Figure 2. The maximum modularity found by the algorithm, divided by that of
the known splitting of a computer-generated random graph (see the main text);
the average over 200 graphs is plotted as a function of kout.

Table 1. Modularity of the best splitting of the Zachary club network obtained
for different metrics and clustering algorithms.

Angular Euclidean

Single linkage 0.412 0.319
Complete linkage 0.412 0.368

Table 1 shows the maximum modularity found by the algorithm: the best value is
again obtained using angular distances combined with either single-linkage or complete-
linkage clustering.

The best splitting is shown in figure 4; it is different from the ‘actual’ breakdown of
the club—i.e. the two groups reported by Zachary are further subdivided. Let us stress
the presence of a single-node community (node 12), and the fact that the modularity value
of this splitting is larger than Zachary’s one (0.371), and larger than the ones found using
other methods [15, 27, 30].

In this case single-linkage and complete-linkage approaches give the same best
splitting. Nevertheless, the hierarchical structures given by the dendrograms in the two
cases are quite different. Figure 5 shows how clusters merge after the best splitting is
identified, as well as the modularity value corresponding to each division. For complete
linkage the modularity value remains close to the best one until the whole network is
merged in one community. On the other hand, for single linkage it falls rather abruptly
right after the first merging, owing to the chaining problem. Moreover, in the former case,
the two Zachary communities are first reconstructed and then joined together, while in

J. Stat. Mech.: Theor. Exp. (2004) P10012 (stacks.iop.org/JSTAT/2004/P10012) 10

http://stacks.iop.org/JSTAT/2004/P10012


JS
TAT

(2004)
P

10012

Detecting network communities: a new systematic and efficient algorithm

1 2 3 4 5 6 7 8
k

 out

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fr
ac

tio
n 

of
 n

od
es

 c
or

re
ct

ly
 c

la
ss

if
ie

d

angular distance, complete linkage
euclidean distance, complete linkage
angular distance, single linkage
euclidean distance, single linkage

Figure 3. The fraction of nodes of computer-generated random graphs correctly
identified by the algorithm, averaged over 200 graphs, as a function of kout.
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Figure 4. Splitting of the Zachary club network. Squares and circles indicate the
two communities observed by Zachary; colours denote the further subdivision
found by our algorithm.

the latter the merging proceeds differently. Therefore, even if the best splittings are the
same in the two cases, complete linkage produces a more reliable dendrogram, describing
more accurately the hierarchical structure.

3.3. Scientific collaboration networks

In order to test the method performance on larger networks we consider two scientific
collaboration networks first analysed by Newman [42]. The vertices are the authors of the
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Figure 5. Comparison between the final part of the dendrogram for the Zachary
club, obtained by using complete-linkage and single-linkage clustering (bottom),
together with the corresponding modularity values (top).

papers that appeared in the cond-mat and hep-th archives at ArXiv.org between 1995
and 1999. Two authors are linked if they have co-authored a paper.

The cond-mat network contains 16 726 nodes, but we focus on its largest connected
component, which contains only 13 861 authors. The computation of the first 1000
eigenvectors takes about two hours on a personal computer. The modularity curve
computation, calculated using up to 999 eigenvectors, lasts around 15 min. Results for
angular distance and complete-linkage clustering are plotted in figure 6. The largest value
of the modularity, Q = 0.736, achieved for a splitting in 229 communities, corresponds to a
602-dimensional space. Obviously, we cannot compare the final splitting with a ‘true’ one,
which is not defined. As the curve in figure 6 is rather flat in its tail, one can legitimately
wonder how the best splitting compares to other ones obtained for similar dimensionalities.
This question is difficult to answer in a rigorous way, and deserves further analysis, which
will eventually lead to a functional definition of the community structure robustness.

Analogously, the hep-th network has 8361 authors with a connected component
of 5835. The largest modularity value, Q = 0.707, is produced by a division into
114 communities, obtained using 416 eigenvectors. The computation of the first 1000
eigenvectors takes around 30 min and the search for the largest modularity value about
8 min. In this case, the initial number of eigenvectors could have been taken much smaller
than 1000, without affecting the final output, with the consequent time saving.

As in previous cases, the number of eigenvectors used to produce the best splitting is
of the order of magnitude of the number of communities found. In these cases, comparison
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Figure 6. The maximum modularity as a function of the number of eigenvectors
for the cond-mat (top) and hep-th (bottom) networks.

with previous community studies is not feasible, as modularity measurements have not
been (to the best of our knowledge) reported in the literature.

4. Conclusions

We have introduced a new algorithm aimed at detecting community structure in complex
networks in an efficient and systematic way. The method combines spectral techniques,
cluster analysis and the recently introduced concept of modularity.

The nodes of the network are projected into a D-dimensional space, where D is the
number of first non-trivial eigenvectors of the Laplacian matrix; their coordinates are
the node projections on each eigenvector. Then a metric (either Euclidean or angular)
is introduced in such an eigenvector space. Once distances are computed, standard
hierarchical clustering techniques (for instance, complete-linkage clustering) are employed
to generate a dendrogram. The subdivision of this dendrogram giving the maximum
modularity is taken as the output of the algorithm for a fixed D. Then, D is also allowed
to vary (from 1 to some arbitrary, maximum value) providing a way to maximize the
modularity and enhance the performance of the method.

The best results are obtained using the angular distance and complete-linkage
clustering; however, other kinds of distances, other clustering algorithms or even other
means to quantify the goodness of a division could be used to improve the results. In this
sense our algorithm is a ‘block-modular’ one: modifications of any of its ingredients could
possibly lead to an overall improvement.

While spectral methods have been profusely used before to analyse similar problems,
we believe that our algorithm represents a step forward in studying complex-network

J. Stat. Mech.: Theor. Exp. (2004) P10012 (stacks.iop.org/JSTAT/2004/P10012) 13

http://stacks.iop.org/JSTAT/2004/P10012


JS
TAT

(2004)
P

10012

Detecting network communities: a new systematic and efficient algorithm

communities, as it combines spectral techniques with (i) the novel concept of modularity,
which provides a very adequate estimate of the quality of a given splitting, and (ii) a way
to optimize the number of eigenmodes taken into consideration.

The weakest part of the method is that the maximum number of eigenvectors to be
computed in order to find the one generating the maximum modularity is not known a
priori. The calculation of eigenvectors being the slowest part of the algorithm, what we do
is take a reasonable number of them and, afterwards, verify that the maximum-modularity
curve as a function of D decreases at its tail; i.e. we make sure that a maximum of the
modularity function is located. If this is not the case, the number of eigenvectors needs
to be enlarged, at the cost of higher computational effort. In the absence of a general
criterion for establishing the monotonicity of the modularity curve, the only possible way
to decide whether the identified local maximum is the global one would be to compute
all possible eigenvalues. In practice, in all the cases studied, the best splitting is found
with a relatively small number of eigenvectors, converting the algorithm into a reliable,
relatively fast and very efficient one.

An open challenge is identifying a systematic criterion for estimating, a priori, what
the order of magnitude of the number of eigenvalues to be computed is, to further optimize
the output and efficiency.

We hope that this new algorithm will be employed with success in the search and study
of communities in complex networks, and will help to uncover new interesting properties.
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